Anatomy and Physiology of the Auditory and Vestibular Systems (SLHS-562A)
(Tues. & Thurs. 2:30 - 3:15) Speech & Hearing Sciences Building, Rm 203

Description of Course
Focuses on anatomy, physiology, and neurophysiology of the auditory and vestibular systems and current research in these areas.

Instructor and Contact Information
Instructor: Frank E. Musiek, SLHS Rm 526, (520) 621-3726, fmusiek@email.arizona.edu
Office Hours- TBA
Assistants: Barrett St. George, Bryan Wong, – graduate research assistants, NeuroAudiology Lab- SLHS Rm 525, stgeorge@email.arizona.edu, bryanwong@email.arizona.edu

Course Format and Teaching Methods
This course is taught primarily as a lecture with interactive techniques. There will be some in-class discussion and use of clicker technology to facilitate class interaction & understanding of course content.

D2L will have Anatomy and Physiology slides.

There are a number of WEB SITES for anatomy of the auditory system – visit them!

Reference lists in Musiek & Baran (textbook) for additional reading and investigation.

Course Objectives and Expected Learning Outcomes
Students will be able to:
- Outline key structures of the peripheral and central auditory systems in ascending fashion.
- Discuss the physiological processing of intensity, frequency and time in both the peripheral and central auditory systems.
- Identify from models and actual specimens key structures of the peripheral and central auditory systems.
- Discuss the influence of pathology on both peripheral and central auditory mechanisms.

Absence and Class Participation Policy
The UA’s policy concerning Class Attendance, Participation, and Administrative Drops is available at http://catalog.arizona.edu/policy/class-attendance-participation-and-administrative-drop

The UA policy regarding absences for any sincerely held religious belief, observance or practice will be accommodated where reasonable: http://policy.arizona.edu/human-resources/religious-accommodation-policy.

Absences preapproved by the UA Dean of Students (or dean’s designee) will be honored. See https://deanofstudents.arizona.edu/absences

Participating in the course and attending lectures and other course events are vital to the learning process. As such, attendance is required at all lectures and discussion section meetings. Absences may affect a student’s final course grade. If you anticipate being absent, are unexpectedly absent, or are unable to participate in class online activities, please contact me as soon as possible. To request a disability-related accommodation to this attendance policy, please contact the Disability Resource Center at (520) 621-3268 or drc-info@email.arizona.edu. If you are experiencing unexpected barriers to your success in your courses, the Dean of Students Office is a...
central support resource for all students and may be helpful. The Dean of Students Office is located in the Robert L. Nugent Building, room 100, or call 520-621-7057.

Required Texts or Readings

The primary text will be “The Auditory System: Its Anatomy, Physiology and Clinical Correlates” (Musiek & Baran). Either edition 1 or 2 will work. You also may need to have ready access to:

- **Gelfand**, Hearing: Physiological and Psychological Acoustics (any edition)
- **Musiek, Baran, Shinn, Jones**: Disorders of the Auditory System
 (available via Neuroaudiology Lab, campus library, or Dr. Musiek)

The primary textbook (Musiek & Baran) is available to purchase through the UofA bookstore: http://shop.uabookstore.arizona.edu/main/CourseMaterials.aspx.

Assignments and Examinations: Schedule/Due Dates

There will be 10 quizzes (approximately 1 quiz per week) worth 10 pts each. There will be a final Exam on 12/16/19 from 3:30-5:30PM worth 120 pts. There will also be an oral presentation that is worth 25 pts (this presentation date will be assigned to you at the beginning of the semester). Accordingly, the total points in this course is 245 points.

Grading Scale and Policies

A final grade of 90 - 100% (221 points or more) is an “A”. A final grade of 80 - 89% (196 – 220 points) is a “B”, and so forth. There will be no rounding or curving of grades.

The student’s final grade will be calculated simply by dividing the total earned points by the total possible points that can be obtained in the course. Under most circumstances, late work will not be accepted, unless previously approved by instructor.

Extra credit is possible – needs to be approved by instructor.

Requests for incomplete (I) or withdrawal (W) must be made in accordance with University policies, which are available at http://catalog.arizona.edu/policy/grades-and-grading-system#incomplete and http://catalog.arizona.edu/policy/grades-and-grading-system#Withdrawal respectively.

Scheduled Topics/Activities (subject to change)

08/27-29 Overview of the course and the need for understanding structure and function of the auditory system for audiology.

 Cell biology: a snapshot

 Overview of anatomy & physiology of the auditory system. -- anatomical planes;
 Outer ear: structure, function, i.e. funneling, protection, etc.
 Middle ear: anatomy, resonance, vibration patterns of TM, Transformer action
 Bone conduction: modes of B/C-- Pathophysiology of the conductive mechanism-- Acoustic reflex

 Readings: Musiek & Baran, ch. 1, ch. 3

09/3-5 The cochlea: anatomy (gross and fine structure), temporal bone, characteristics of the traveling wave, and cochlear mechanics, cochlear electrophysiology, frequency and intensity coding, outer, inner hair cells, biological amplifier, OAEs, non linearity, recruitment. Microscope Slide review.

 Readings: Musiek & Baran, ch. 4, 5, & 6

09/10-12 Cochlear function con’t. & Microscope slide review

 Readings: same as previous week

09/17-19 Cochlear electrophysiology and pathophysiology, ECP, CM, SP, NIHL, hydrops,
recruitment, tinnitus.

Readings: same; Option: Moller, pp 396-398, 409-418, 422-428, 461-472

09/24-26
Finish cochlea, start Auditory Nerve; The nerve anatomy, IAM, tonotopic arrangement, frequency coding, (tuning curves) intensity coding, spontaneous activity, action potentials, Volley theory, synaptic ribbons, pathology
Readings: Musiek & Baran, ch. 7; Gelfand, ch. 5; Moller, pp. 155-157, 171-173.

10/1-3
Auditory nerve con’t & animations, overview of vestibular system

10/8-10
Summary of periphery & Brainstem pathway; anatomy; acoustic/startle reflexes, tonotopic aspects, frequency/intensity coding, ABR, binaural processes, vascular anatomy
Readings: Musiek & Baran, ch. 1; pp 17-33 (CANS) (Ed. 1) pp. 21-36 (Ed. 2)

10/15-17
Brainstem con’t, Vascular anatomy

10/22-24
Auditory cortex and sub cortex, anatomy, tonotopic aspects, coding intensity, EPs.
Readings: Musiek, Baran, ch. 12

10/29-31
* Computerized dissection (lab) (this may be extra class time depending on schedule)

11/5-11/7
Interhemispheric and efferent function. Anatomy, transcallosal activity, neurological aspects,
Readings: Musiek & Baran, ch. 13.

11/12-14
Pathoanatomy, pathophysiology of the CANS, & Vascular anatomy
Readings: TBA

11/19-21
Efferent system
Readings: ch. 15.

11/26
OCB, neurotransmitters No class 11/28 (Thanksgiving Recess)

12/3-5
Neuroradiology (optional), The Profession & Anatomy & Physiology,a or selected topics, catch up

12/10
Catch up and Review.

12/16
FINAL EXAM (3:30-5:30pm) -- room to be announced.

• a =This maybe inserted whenever time permits throughout the course

Topics for Oral Presentation: the “classics”

- Dewey Neff – Discrimination findings related to Ablations of Auditory Cortex in Cat.
- George von Bekesy’s experiments leading up to the Nobel Prize.
- Wilder Penfield’s experiments on auditory cortex stimulation during neurosurgery.
- William Dublin’s work on the pathology of kernicterus (hyperbilirubinemia).
- Robert Galambos’ experiments on the OCB.
- William Brownell’s Hair cell motility studies.
- Kent Morest’s transsynaptic degeneration & related issues.
- Aage Moller’s recordings of the ABR waves during neurosurgery.
- Harold Schuknecht’s cochleogram and damage from high intensity noise exposure.
- Clinton Woolsey’s research on auditory cortex.
- Jerzy Rose
- Catherine Smith, vascular anatomy studies.
- Joseph Zwislocki’s studies on “fundamentals” of the cochlea. Or central masking.
- Jurgen Tonndorf’s studies on cochlear function or bone conduction.
This presentation will require a 12 minute lecture on the topic selected. At the time of the presentation you will need to hand in a concise 2 page summary and key references of the main points of your presentation. You should include at least 1 illustration or figure. Your grade will be solely dependent on your presentation unless the summary is very poorly done or not turned in—then points will be subtracted from your presentation.

Principles to Guide You in Reading Neurobiology of the Auditory System

- The more rostral you proceed up the auditory system the more humans and animals are dissimilar.
- There are many errors in publication on anatomy and physiology (A & P) of the auditory system. Be careful of publications that are not peer reviewed and internet information that is not Medline. If you are unsure ask the instructor.
- There has been a virtual explosion of information on A & P of the auditory system in the past decade. This is great but much is not highly relevant to audiology, let’s work on mostly information that is pertinent.
- Auditory neurobiology, functional anatomy, biology, neuroscience, physiology, neurophysiology, physiological acoustics, for purposes of this course are all synonyms for structure and function.
- Anatomy physiology and psychoacoustics are tightly linked; one tells us about the other. Both in normal and disordered states.
- Knowledge about A & P of the auditory system is knowledge about hearing.
- It has been well shown that individuals well-grounded in A & P make the best clinical audiologists (especially in diagnostics).
- Diagnostic audiology has and will continue to be anatomically based, i.e., conductive, sensorineural, cochlear, retrocochlear, peripheral, central, etc.
- The auditory system works sequentially and in parallel. This facilitates quick processing.
- The auditory system is highly temporal, speed is critical. In the auditory system it is the “Quick and the dead” – it operates quickly or it doesn’t operate appropriately.
- The peripheral auditory system is practically mature at birth but the central auditory system matures in the teenage years.

Classroom Behavior Policy

To foster a positive learning environment, students and instructors have a shared responsibility. We want a safe, welcoming, and inclusive environment where all of us feel comfortable with each other and where we can challenge ourselves to succeed. To that end, our focus is on the tasks at hand and not on extraneous activities (e.g., texting, chatting, reading a newspaper, making phone calls, web surfing, etc.). Students are asked to refrain from disruptive conversations with people sitting around them during lecture. Students observed engaging in disruptive activity will be asked to cease this behavior. Those who continue to disrupt the class will be asked to leave lecture or discussion and may be reported to the Dean of Students.

Threatening Behavior Policy

The UA Threatening Behavior by Students Policy prohibits threats of physical harm to any member of the University community, including to oneself. See http://policy.arizona.edu/education-and-student-affairs/threatening-behavior-students.

- William House, electrical stimulation of the auditory nerve & early cochlear implants.
- Deepak Pandya’s work on inter-hemispheric connections.
- Jack Vernon
- Nelson Kiang: studies of the physiology of the auditory nerve.
- Merle Lawrence
- Joseph Hawkins
- Hallowell Davis
- E.G. Wever
- Grant Rassmussen
Accessibility and Accommodations

Our goal in this classroom is that learning experiences be as accessible as possible. If you anticipate or experience physical or academic barriers based on disability, please let me know immediately so that we can discuss options. You are also welcome to contact the Disability Resource Center (520-621-3268) to establish reasonable accommodations. For additional information on the Disability Resource Center and reasonable accommodations, please visit http://drc.arizona.edu.

If you have reasonable accommodations, please plan to meet with me by appointment or during office hours to discuss accommodations and how my course requirements and activities may impact your ability to fully participate.

Please be aware that the accessible table and chairs in this room should remain available for students who find that standard classroom seating is not usable.

Code of Academic Integrity

Students are encouraged to share intellectual views and discuss freely the principles and applications of course materials. However, graded work/exercises must be the product of independent effort unless otherwise instructed. Students are expected to adhere to the UA Code of Academic Integrity as described in the UA General Catalog. See http://deanofstudents.arizona.edu/academic-integrity/students/academic-integrity.

The University Libraries have some excellent tips for avoiding plagiarism, available at http://new.library.arizona.edu/research/citing/plagiarism.

Selling class notes and/or other course materials to other students or to a third party for resale is not permitted without the instructor’s express written consent. Violations to this and other course rules are subject to the Code of Academic Integrity and may result in course sanctions. Additionally, students who use D2L or UA e-mail to sell or buy these copyrighted materials are subject to Code of Conduct Violations for misuse of student e-mail addresses. This conduct may also constitute copyright infringement.

UA Nondiscrimination and Anti-harassment Policy

The University is committed to creating and maintaining an environment free of discrimination; see http://policy.arizona.edu/human-resources/nondiscrimination-and-anti-harassment-policy.

Additional Resources for Students

UA Academic policies and procedures are available at http://catalog.arizona.edu/policies
Student Assistance and Advocacy information is available at http://deanofstudents.arizona.edu/student-assistance/students/student-assistance

Subject to Change Statement

Information contained in the course syllabus, other than the grade and absence policy, may be subject to change with advance notice, as deemed appropriate by the instructor.